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The vibrations of a free and loaded tyre�
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Abstract

Using the model of a wheel with a reinforced tyre [Vil’ke VG, Kozhevnikov IF. A model of a wheel with a reinforced tyre. Vestnik
MGU. Ser.1. Matematika Mekhanika 2004;4:37–45], the natural frequencies and natural forms of vibrations of a free or loaded tyre
in the neighbourhood of the equilibrium position are determined. The spectrum of natural frequencies and natural forms of vibration
are found analytically for a free (unloaded) tyre with a fixed disc. A similar problem is solved numerically in the case of a loaded
tyre. The results of this analysis can be used to estimate the level of noise which occurs when a vehicle moves on an uneven surface.
© 2006 Elsevier Ltd. All rights reserved.

The small vibrations of wheels have been investigated by many researchers. In particular, the vibrations of a tyre
have been investigated using the model of an elastic ring and the transmission of vibrations from the road to the axis of
the wheel have been analysed.2 The vibrations of a flexible extensible rotating ring have been considered in the linear
formulation3 and taking into account the geometrical non-linearity.4 A review of papers devoted to the vibrations of
wheels in a complex dynamic vehicle suspension and their influence on the forces transmitted from the tyre to the body
of the vehicle can be found in Ref. 5.

1. A free tyre

We will assume that the wheel with the reinforced tyre consists of a disc, which is an absolutely rigid body, having
six degrees of freedom, joined to the side wall of the tyre, represented in the undeformed state by parts of two tori and
a tread of reinforced inextensible fibres (cords). In the undeformed state the tread is represented by a circular cylinder
of radius r. The tyre makes contact with the plane along a part of the tread. The sides possess elastic properties, and
their material is described by the Mooney-Rivlin incompressible rubber model.6

Suppose the wheel is fixed and unloaded. Then

Here X1, X2 and X3 are the coordinates of the centre of mass of the disc C, and �, � and � are the swivel, tilt and
natural rotation angles respectively. The equations of motion and the condition of the middle line of the tread to be
inextensible have the form1
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(1.1)

where u = u(�, t) and v = v(ϕ, t) are the radial and tangential displacements of points of the middle line of the tread
of a moving cylindrical system of coordinates, � is the density per unit length of the middle line of the tread, � = �(�,
t) is the undetermined Lagrange multiplier (its physical meaning is the tension of the middle line of the tread) and n0,
n01, n11, n02, n12, m02, m20, m12, m21 are constant coefficients which depend on the geometrical parameters of the tyre
and the pressure inside it (expressions for the coefficients are not given here in view of their length).

In the case of a fixed unloaded wheel, the boundary conditions for the functions u(�, t), and v(ϕ, t) change into the
conditions for these functions to be periodic

We will represent the Lagrange multiplier in the form

where �1 is a quantity of the first order of smallness. Taking the derivative of both sides of the first equation of (1.1)
and adding it to the second, using the linearized condition for the middle line of the tread to be inextensible, we arrive
at an equation for the function v(ϕ, t) and the condition for it to be periodic (a similar equation was previously obtained
in3)

(1.2)

The natural vibrations of the tyre, described by Eq. (1.2), can be obtained in the form

where � is the angular frequency. Then

(1.3)

We will represent the solution of this equation in the form

(1.4)

where pi (i = 1, 2) are the roots of the characteristic equation

(1.5)

i.e.

(1.6)

Since the function X(�) must be 2�-periodic, it follows that only exponents with pure imaginary indices, the modulus
of which is a multiple of 2�, need be retained, i.e.

In Fig. 1 we show graphs of p2
1, p

2
2 against q = −�r3�2/a0 > 0 for c = 22.62 cm and a = 0 cm (on the left) and a = −5 cm

(on the right); the parameters a and c define the centre of the circle, the arc of which is the side of the tyre. It can be
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Fig. 1.

Fig. 2.

seen that only p2
1 when p1 = 2�in can give an infinite frequency spectrum

Note that a0 < 0.
The corresponding natural forms are represented by the expression

Any natural form, corresponding to the frequency �n, is represented by a linear combination of cosn� and sinn�.
The first four natural forms are shown in Fig. 2, and the corresponding frequencies for the parameters a = 0 cm and
c = 22.62 cm are as follows:

The coefficient a0 depends on the pressure in the tyre and its geometrical parameters (a and c). For certain values of
these parameters it is impossible to construct the side wall of the tyre, since it must be joined to the disc and the tread
by an arc of a circle. This range of values of the parameters (a, c) corresponds to region A in Fig. 3. In the range of
values of the parameter B2 it is possible to construct the side wall of the tyre, but in this case the coefficient a0 > 0,
which indicates the presence of solutions of the form e�tX(�), � > 0, describing small vibrations of the tyre and, of

Fig. 3.
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course, instability of the chosen shape of the side wall of the tyre. In the regions B1, the parameters (a, c) are such that
for values of these one obtains the required shape of stable side walls of the tyre (a0 < 0).

2. A loaded tyre

Consider the problem of small vibrations of a tyre about the equilibrium position. The equilibrium of a loaded tyre
was considered in Ref. 1, when

and the variables u and v are functions solely of the angle �. The contact area is constant � ∈ [�1, �2] (in Ref. 1 it was
assumed that the contact area is a rectangle of constant width, equal to the width of the tread, and the variable length;
the length of the contact area is defined by two functions of time �1(t) and �2(t), which are unknown in advance and
are found from the equations of motion). Henceforth we will assume that the wheel is fixed, and during the vibrations
the functions u, v, �, �1, �2 vary. The corresponding equations have the form (1.1), while the boundary conditions are
as follows:

(2.1)

Here [f (ϑ)]k = f (ϑk + 0) − f (ϑk − 0) is the jump in the function at the end point of the contact area. The subscript
l(k) is understood to indicate the value of the corresponding function at ϑ1 − 0 for k = 1 and at ϑ2 + 0 for k = 2, and
	1k is the component of the reaction of the constraint at the boundary points of the contact area. We will represent the
functions defining the deformations of the middle line of the tread, the Lagrange multipliers and the functions defining
the contact area, in the following form

where U, V, λ◦, µ◦
1k, ϕ

◦
k is the solution describing the equilibrium position of the tyre and which satisfies the following

equations and boundary conditions

(2.2)

From this system we obtain the functions U, V, λ◦, µ◦
1k, ϕ

◦
k , where λ◦ = n0 + λ◦

1, λ
◦
1 is a term of the first order of

smallness.
We obtain the variables Uvib and Vvib, which define small vibrations of the tyre in the neighbourhood of the

equilibrium position, from the following system (here it is necessary to take into account the fact that the Lagrange
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multipliers �vib, 	vib 1k and also �vib k are of the first order of smallness):

(2.3)

Taking the derivative of both sides of the first equation and adding it to the second, using the linearized condition of
the middle line of the tread to be inextensible, we obtain the following equation and boundary conditions

(2.4)

We can determine �vib k from the following dynamic boundary conditions (the fourth relation in (2.3))

Hence, the contact area “pulsates” at the same frequency as the frequency V′′
vib.

However, when determining the frequency of the vibrations of the tyre, the value of the contact area can be taken
as constant, since its change determines the correction to the frequency of the second order of smallness in the model
chosen. Hence, the boundary conditions in problem (2.4) are equivalent to the following

Henceforth, for simplicity, we will write �k instead of ϕ◦
k .

We will represent the functions, which define the small vibrations, and the Lagrange multipliers in the form

where � is the angular frequency. Substituting these expressions into Eq. (2.4) we obtain an equation, similar to (1.3),
with a solution which has the form (1.4) and characteristic Eq. (1.5).

The coefficients Gi are found from the boundary conditions

(2.5)

The homogeneous system (2.5) has a non-zero solution if its determinant is equal to zero:

(2.6)

The expressions for the functions p1 = p1(�) and p2 = p2(�) are given by formula (1.6). The spectrum of the natural
frequencies {ωn}∞n=1 is found from the characteristic Eq. (2.6).

As an example, we solved Eq. (2.6) numerically for a tyre with dimensions of 175/70 R13 with an internal pressure
p = 2 atmospheres and values of the Mooney-Rivlin constants k1 = 13 H/cm2 and k2 = 13 H/cm2 for three values of the
contact area (the load).
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Fig. 4.

In Fig. 4 we show graphs of the function f(�) for a = 0 cm and c = 22.62 cm. The points of intersection of the graph
with the abscissa axis give an infinite frequency spectrum. Each natural form Xn, defined by expression (1.4) has its own
frequency �n (the constants Gi are found from boundary conditions (2.5)). Fig. 4 has three graphs, which show what
occurs with the frequencies for contact areas of different value (an increase in the contact area is related to an increase
in the external load). It can be seen that an increase in the contact area involves “condensation” of the frequencies.
This fact correlates well with the theorem of the theory of small oscillations regarding the behaviour of the natural
frequencies when a constraint is imposed.

Eq. (2.6) may give extraneous roots. In particular, it is easy to see that this equation has zero roots: p1 = 0 and p2 = 0.
However, the natural forms X(�) corresponding to these cases are equal to zero.

When p1 = p2 the natural forms must be sought in the form

(2.7)

The coefficients Gi are found from the boundary conditions

(2.8)

The determinant of system (2.8) can be represented in the form

(2.9)

The equation g(�) = 0 has a single root, corresponding to p1 = 0. But in this case we again obtain that X(�) = 0.
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